Electrophysiological Evidence of Object Processing in Visual Working Memory

Lingxia Fan, Yan Lei, Dong Yang, Renlu Guo

Abstract


There is an ongoing debate concerning object-based or feature-based processing when objects are stored in visual working memory (VWM). The present study demonstrates that object processing depends not only on the irrelevant features but also on the number of objects to be remembered. In a change-detection paradigm, participants were asked to memorize two, four, or six object colors for later detection and ignore the object shapes. The processing of task-irrelevant shapes was evaluated. The results of Experiment 1 showed that object-based processing dominated in VWM when memory load was two or four, but feature-based processing took over when the memory load was six, as indicated by the N2pc potentials. Experiment 2 used detailed random polygons that were defined by color and shape as memory items. The level of memory load was limited to two and four colors. The results showed that the N2pc potential only appeared in the color-matched condition and was not affected by memory load, suggesting that feature-based processing dominated whenever the task demand was low. These results support the notion of a discrete model of object processing in VWM that allocates discrete mechanism for different features. Furthermore, our study highlights the relationship between working memory resources and object processing in VWM.


Keywords


visual working memory, object-based storage, memory load, event-related potential, N2pc

Full Text:

PDF

References


Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111.

Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851–854.

Bays, P. M., Wu, E. Y., & Husain, M. (2011). Storage and binding of object features in visual working memory. Neuropsychologia, 49(6), 1622–1631.

Brisson, B., Robitaille, N., & Jolicoeur, P. (2007). Stimulus intensity affects the latency but not the amplitude of the N2pc. NeuroReport, 18(15), 1627–1630.

Chun, M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception & Performance, 21(1), 109–127.

Ecker, U. K., Maybery, M., & Zimmer, H. D. (2013). Binding of intrinsic and extrinsic features in working memory. Journal of Experiment Psychology: General, 142(1), 218–234.

Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20(8), 1423–1433.

Gao, Z., Li, J., Yin, J., & Shen, M. (2010). Dissociated mechanisms of extracting perceptual information into visual working memory. PLoS ONE, 5(12), e14273.

Gao, T., Gao Z., Li, J., Sun, Z., & Shen, M. (2011). The perceptual root of object-based storage: An interactive model of perception and visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 37(6), 1803–1823.

Hickey, C., McDonald, J. J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. Journal of Cognitive Neuroscience, 18(4), 604–613.

Irwin, D. E., & Andrews, R. V. (1996). Integration and accumulation of information across saccadic eye movements. In T. Inui & J. L. McClelland (Eds.), Attention and performance XVI: Information integration in perception and communication (pp. 125–155). Cambridge, MA: MIT Press.

Kiss, M., Van Velzen, J., & Eimer, M. (2008). The N2pc component and its links to attention shifts and spatially selective visual processing. Psychophysiology, 45(2), 240–249.

Lavie, N. (2005). Distracted and confused?: selective attention under load. Trends in Cognitive Science, 9(2), 75–82.

Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experiment Psychology: General, 133(3), 339–354.

Lin, P.-H., & Luck, S. J. (2012). Proactive interference does not meaningfully distort visual working memory capacity estimates in the canonical change detection task. Frontiers in psychology, 3. doi: 10.3389/fpsyg.2012.00042.

Luck, S. J., Girelli, M., McDermott, M. T., & Ford, M. A. (1997). Bridging the gap between monkey neurophysiology and human perception: An ambiguity resolution theory of visual selective attention. Cognitive Psychology, 33(1), 64–87.

Luck, S. J. (2005a). An introduction to the event-related potential technique. Cambridge: MIT Press.

Luck, S. J. (2005b). The operation of attention-millisecond by millisecond-over the first half second. In H. Ogmen & B. G. Breitmeyer (Eds.), The first half second: The microgenesis and temporal dynamics of unconscious and conscious visual processes (pp. 23–40). Cambridge, MA: MIT Press.

Luria, R., & Vogel, E. K. (2011). Shape and color conjunction stimuli are represented as bound objects in visual working memory. Neuropsychologia, 49(6), 1632–1639.

McCollough, A. W., Machizawa, M. G., & Vogel, E. K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cortex, 43(1), 77–94.

Oberauer, K., & Eichenberger, S. (2013). Visual working memory declines when more features must be remembered for each object. Memory & Cognition, 41(8), 1212–1227.

Olson, I. R., & Jiang, Y. (2002). Is visual short-term memory object based? Rejection of the “strong-object†hypothesis. Perception and Psychophysics, 64(7), 1055–1067.

Pasternak, T., & Greenlee, M. W. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6(2), 97–107.

Parra, M. A., Cubelli, R., & Della Sala, S. (2011). Lack of color integration in visual short-term memory binding. Memory & Cognition, 39(7), 1187–1197.

Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64(5), 754–763.

Shen, M. W., Li, J., Lang, X. M., Gao, T., Gao, Z. F., & Shui, R. D. (2007). The storage mechanism of objects in visual working memory. Acta Psychologica Sinica, 39(5), 761–767.

Shen, M., Tang, N., Wu, F., Shui, R., & Gao, Z. (2013). Robust object-based encoding in visual working memory. Journal of Vision, 13(2), 1–11.

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.

Ueno, T., Mate, J., Allen, R. J., Hitch, G. J., & Baddeley, A. D. (2011). What goes through the gate? Exploring interference with visual feature binding. Neuropsychologia, 49(6), 1597–1604.

Vicari, S., Bellucci, S., & Carlesimo, G. A. (2006). Evidence from two genetic syndromes for the independence of spatial and visual working memory. Developmental Medicine & Child Neurology, 48(02), 126–131.

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1436–1451.

Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131(1), 48–64.

Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 1120–1135.

Wolfe, J. M. (2010). Visual search. Current Biology, 20(8), R346–R349.

Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it. Nature Reviews Neuroscience, 5(6), 495–501.

Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400(6747), 867–869.

Woodman, G. F., & Vogel, E. K. (2008). Selective storage and maintenance of an object's features in visual working memory. Psychonomic Bulletin & Review, 15(1), 223–229.

Xu, Y. (2010). The neural fate of task-irrelevant features in object-based processing. The Journal of Neuroscience, 30(42), 14020–14028.

Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440(7080), 91–95.


Refbacks

  • There are currently no refbacks.


International Journal of Humanities and Social Sciences

Print version: 1694-2620
Online version: 1694-2639